Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Rep ; 20(4): 57, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414627

RESUMO

Glycosylphosphatidylinositol-glycan (GPI) is an anchor to specific cell surface proteins known as GPI-anchored proteins (APs) that are localized in lipid rafts and may act as cell co-receptors, enzymes and adhesion molecules. The present review investigated the significance of GPI biosynthesis class phosphatidylinositol-glycan (PIG)M and PIGX in GPI synthesis and their implications in human health conditions. PIGM encodes GPI-mannosyltransferase I (MT-I) enzyme that adds the first mannose to the GPI core structure. PIGX encodes the regulatory subunit of GPI-MT-I. The present review summarizes characteristics of the coding sequences of PIGM and PIGX, and their expression in humans, as well as the relevance of GPI-MT-I and the regulatory subunit in maintaining the presence of GPI-APs on the cell surface and their secretion. In addition, the association of PIGM mutations with paroxysmal nocturnal hemoglobinuria and certain types of GPI-deficiency disease and the altered expression of PIGM and PIGX in cancer were also reviewed. In addition, their interaction with other proteins was described, suggesting a complex role in cell biology. PIGM and PIGX are critical genes for GPI synthesis. Understanding gene and protein regulation may provide valuable insights into the role of GPI-APs in cellular processes.

2.
FEBS Open Bio ; 10(11): 2305-2315, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32902187

RESUMO

Galectin-9 levels have been reported to be altered in several cancer types, but the mechanism that regulates the expression of Galectin-9 has not been clarified. Galectin-9 is encoded by the LGALS9 gene, which gives rise to eight mRNA variants. The aims of this study were: (a) to identify the mRNA variants of LGALS9, (b) to characterize CpG methylation and H3K9 and H3K14 histone acetylation at the promoter of the LGALS9 gene, and (c) to characterize the relationship between these modifications and LGALS9 expression level in cervical cancer cells. All mRNA variants were detected in HaCaT (nontumoural keratinocytes) and SiHa cells, and seven were observed in HeLa cells. The promoter region of LGALS9 contains eight CpG dinucleotides. No hypermethylation pattern related to low LGALS9 expression was identified in tumour cells. Chromatin immunoprecipitation analysis demonstrated higher acetylation of H3K9ac and H3K14ac in HaCaT cells, which was related to higher mRNA levels. The presence of the mRNA variants suggests that alternative splicing may regulate the expression of galectin-9 isoforms. The results of this study suggest that histone acetylation, but not promoter CpG methylation, may be involved in the transcriptional regulation of the LGALS9 gene.


Assuntos
Galectinas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Neoplasias do Colo do Útero/genética , Acetilação , Ilhas de CpG/genética , Metilação de DNA/genética , Feminino , Galectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HaCaT , Células HeLa , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Biosci Trends ; 14(2): 144-150, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32295993

RESUMO

The ST3GAL4 gene encodes the enzyme Galß1-4GlcNAc α2,3 sialyltransferase (ST3Gal IV). This enzyme participates in the synthesis of the sialyl Lewis x antigen. In different cancer types altered expression of this antigen has been reported. The transcriptional regulation of this gene is very complex, different mRNA variants (V1-V10) have been reported and are originated by the activity of different promoters and alternative splicing. Only the promoter that gives rise to the V3 variant has not been previously reported. The objective of this work was to identify and characterize the V3 promoter of the ST3GAL4 gene. For this, the putative V3 promoter of the ST3GAL4 gene was delimited by in silico analysis. The complete promoter and smaller versions were cloned in a reporter plasmid. The constructs were transfected in the HaCaT cells and the promoter activity was evaluated by luciferase reporter assays. The cloned region showed promoter activity, and the basal activity was not dependent on TATA boxes. However, the GC boxes, an initiator element (Inr) and downstream promoter element (DPE) could contribute to basal activity. The promoter contains several binding sites for the nuclear factor of activated T-cells (NFAT) that could participate in inducible activity during the immune response. The minimal promoter corresponds to a fragment of approximately 300 bp, located in the position -347 b to -40 b. The characterization of the V3 promoter of the ST3GAL4 gene completes the study of the four promoters of this gene, this contributes to the understanding of its complex transcription regulation.


Assuntos
Regiões Promotoras Genéticas , Sialiltransferases/genética , Transcrição Gênica , Processamento Alternativo , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Biologia Computacional , Humanos , Isoenzimas/genética , Fatores de Transcrição NFATC/metabolismo
4.
Mol Med Rep ; 18(1): 617-621, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749491

RESUMO

ST3GAL4 gene expression is altered in different cancer types, including cervical cancer. Several mRNA transcripts have been reported for this gene; however, their expression levels in cervical cancer have not been analyzed. ST3GAL4 encodes for ß­galactosidase α­2,3­sialyltransferase 4, involved in the biosynthesis of the tumour antigens sLe(x) and sulfo­sLe(x). The present study evaluated the presence of three mRNA variants (V1, V2 and V3) in cervical cancer cell lines, detecting the three variants. Additionally, the expression level of the V1 transcript of the ST3GAL4 gene was determined by reverse transcription­quantitative polymerase chain reaction in cervical cell lines and in normal, premalignant and cervical cancer tissue. The V1 transcript of the ST3GAL4 demonstrated significant decreased expression in premalignant and malignant cervical tissues. The results suggested that deregulation of this gene could occur prior to the presence of cancer and demonstrated the importance of evaluating the expression level of V1, and its association with disease progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Isoformas de RNA/genética , Sialiltransferases/genética , Neoplasias do Colo do Útero/enzimologia , Adolescente , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/genética , Adulto Jovem
5.
Asian Pac J Cancer Prev ; 15(3): 1181-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606438

RESUMO

Sialyltransferase gene expression is altered in several cancers, including examples in the cervix. Transcriptional regulation of the responsible genes depends on different promoters. We aimed to determine the association of single-nucleotide polymorphisms in the B3 promoter of the ST3GAL4 gene and the P1 promoter of the ST6GAL1 gene with cervical premalignant lesions or cervical cancer. A blood sample and/or cervical scrapes were obtained from 104 women with normal cytology, 154 with premalignant lesions and 100 with cervical cancer. We also included 119 blood samples of random donors. The polymorphisms were identified by sequencing from PCR products. For the B3 promoter, a fragment of 506 bp (from nucleotide -408 to +98) was analyzed, and for the P1 promoter a 490 bp (-326 to +164) fragment. The polymorphism analysis showed that at SNP rs10893506, genotypes CC and CT of the ST3GAL4 B3 promoter were associated with the presence of premalignant lesions (OR=2.89; 95%CI 1.72-4.85) and cervical cancer (OR=2.23; 95%CI 1.27-3.91). We detected only one allele of each polymorphism in the ST6GAL1 P1 promoter. We did not detect any genetic variability in the P1 promoter region in our study population. Our results suggest that the rs10893506 polymorphism -22C/T may increase susceptibility to premalignant and malignant lesions of the cervix.


Assuntos
Antígenos CD/genética , Colo do Útero/patologia , Lesões Pré-Cancerosas/genética , Sialiltransferases/genética , Neoplasias do Colo do Útero/genética , Antígenos CD/sangue , Sequência de Bases , Feminino , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/patologia , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Sialiltransferases/sangue , Neoplasias do Colo do Útero/sangue , beta-Galactosídeo alfa-2,3-Sialiltransferase
6.
J Biosci ; 37(2): 259-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22581331

RESUMO

The level of beta-galactoside alpha2,6-sialyltransferase I (ST6Gal I) mRNA, encoded by the gene siat1, is increased in malignant tissues. Expression is regulated by different promoters - P1, P2 and P3 - generating three mRNA isoforms H, X and YZ. In cervical cancer tissue the mRNA isoform H, which results from P1 promoter activity, is increased. To study the regulation of P1 promoter, different constructs from P1 promoter were evaluated by luciferase assays in cervical and hepatic cell lines. Deletion of a fragment of 1048 bp (-89 to +24 bp) increased 5- and 3-fold the promoter activity in C33A and HepG2 cell lines, respectively. The minimal region with promoter activity was a 37 bp fragment in C33A cells. The activity of this region does not require the presence of an initiator sequence. In HepG2 cells the minimal promoter activity was detected in the 66 bp fragment. Sp1 (-32) mutation increased the promoter activity only in HepG2 cells. HNF1 mutation decreased promoter activity in HepG2 cell line but not in C33A cells. We identified a large region that plays a negative regulation role. The regulation of promoter activity is cell type specific. Our study provides new insights into the complex transcriptional regulation of siat1 gene.


Assuntos
Antígenos CD/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutação , Sialiltransferases/genética , Neoplasias do Colo do Útero/genética , Antígenos CD/metabolismo , Sequência de Bases , Sítios de Ligação , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Células Hep G2 , Fator 1 Nuclear de Hepatócito/genética , Humanos , Neoplasias Hepáticas/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Isoformas de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sialiltransferases/metabolismo , Fator de Transcrição Sp1/imunologia , Neoplasias do Colo do Útero/enzimologia
7.
J Bacteriol ; 189(16): 5916-28, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17586645

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 colonizes the human intestine and is responsible for diarrheal outbreaks worldwide. Previously we showed that EHEC produces long polar fimbriae (LPF) and that maximum expression is observed during the exponential phase of growth at 37 degrees C and pH 6.5. In this study, we analyzed the roles of several regulators in the expression of LPF using the beta-galactosidase reporter system, and we found that H-NS functions as a transcriptional silencer while Ler functions as an antisilencer of LPF expression. Interestingly, deletion of the hns and ler genes in EHEC caused constitutive expression of the fusion reporter protein. Semiquantitative reverse transcription (RT)-PCR was also used to analyze LPF expression in the EHEC ler or hns mutant strain. The hns mutant exhibited an increase in lpf mRNA expression, while expression in the ler mutant was decreased, compared to that in the wild-type strain. Using primer extension analysis, we identified two potential transcriptional start sites within the regulatory region of lpf and located consensus hexamers of -10 (CAAGAT) and -35 (TTCAAA), which are commonly found in sigma(70)-dependent promoters. Further, we determined whether H-NS and Ler interact directly with the lpf promoter region by using purified His-tagged proteins and electrophoretic mobility shift assays. Our data are the first to show direct binding interactions between the H-NS and Ler proteins within the regulatory sequence of the lpf operon. Based on the electrophoretic mobility shift assay, RT-PCR, primer extension, and beta-galactosidase assay results, we concluded that the E. coli O157:H7 lpf operon possesses a promoter dependent on sigma(70), that H-NS binds to the regulatory sequence of lpfA and "silences" the transcription of lpf, and that Ler binds to the regulatory sequence and inhibits the action of the H-NS protein.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/fisiologia , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transativadores/fisiologia , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Proteínas de Fímbrias/genética , Fases de Leitura Aberta/genética , Óperon , Reação em Cadeia da Polimerase , Sequências Reguladoras de Ácido Nucleico
8.
Int J Med Microbiol ; 297(3): 177-85, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17353147

RESUMO

The ability of Escherichia coli O157:H7 to colonize the intestinal epithelia is dependent on the expression of intimin and other adhesins. The chromosome of E. coli O157:H7 carries two loci encoding long polar fimbriae (LPF). These fimbriae mediate adherence to epithelial cells and are associated with colonization of the intestine. In order to increase our knowledge about the conditions controlling their expression and their role in colonization of an animal model, the environmental cues that promote expression of lpf genes and the role of E. coli O157:H7 LPF in intestinal colonization of lambs were investigated. We found that expression of lpf1 was regulated in response to growth phase, osmolarity, and pH; that lpf2 transcription was stimulated during late exponential growth and iron depletion; and that LPF impacts the ability of E. coli O157:H7 to persist in the intestine of infected 6-week-old lambs.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli O157/genética , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Doenças dos Ovinos/microbiologia , Animais , Meios de Cultura/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Ferro/metabolismo , Mutação , Técnicas de Cultura de Órgãos , Concentração Osmolar , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...